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Porous materials are widely used for applications in gas storage and separation. The diffusive properties7

of a variety of gases in porous media can be modeled using molecular dynamics simulations that can be8

computationally demanding depending on the pore geometry, complexity, and amount of gas adsorbed. We9

explore a dimensionality reduction approach for estimating the self-diffusion coefficient of gases in simple10

pores using Langevin dynamics, such that the three-dimensional (3D) atomistic interactions that determine11

the diffusion properties of realistic systems can be reduced to an effective one-dimensional (1D) diffusion12

problem along the pore axis. We demonstrate the approach by modeling the transport of nitrogen molecules13

in single-walled carbon nanotubes of different radii, showing that 1D Langevin models can be parametrized with14

a few single-particle 3D atomistic simulations. The reduced 1D model predicts accurate diffusion coefficients15

over a broad range of temperatures and gas densities. Our work paves the way for studying the diffusion process16

of more general porous materials such as zeolites or metal-organics frameworks with effective models of reduced17

complexity.18
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I. INTRODUCTION20

The simulation of gas diffusion in nanoporous solid-state21

materials is important for applications such as gas filtering,22

separation, and storage [1–5]. The self-diffusion coefficient23

of a gas in a porous medium is an essential physical quantity24

that characterizes mass transfer and is a relevant parameter for25

designing industrial separation processes [6], diffusion of gas26

mixtures [4], and the selectivity of gas separation techniques27

[3,7–10]. The diffusive properties of gases in porous media28

are ultimately related to the short- and long-range interaction29

potentials between gas particles and between gas molecules30

and the condensed-phase environment [11].31

The growing interest in estimating the diffusive properties32

of target gases in porous materials reported in public databases33

[5] has stimulated the search for methods to accelerate large34

scale screening efforts based on fully atomistic simulations,35

which in general are computationally demanding [8,12,13].36

Acceleration strategies based on machine learning are promis-37

ing because training sets with acceptable predictive power can38

be constructed with a smaller number of calculations than an39

exhaustive database search [14,15]. An alternative accelera-40

tion strategy would be to develop generalizable physics-based41

models that are sufficiently accurate for ranking materials42

based on their transport properties, but at a much lower cost43

than atomistic simulations.44

In this context, we study the dimensionality reduction ca-45

pabilities of one-dimensional (1D) Langevin dynamics for46

modeling gas diffusion inside carbon nanotubes at differ-47

ent temperatures. The predictions of the reduced model are48
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compared to the three-dimensional (3D) molecular dynam- 49

ics (MD) simulations. For concreteness, we consider the 50

transport of molecular nitrogen in single-walled carbon nan- 51

otubes (CNTs) and obtain self-diffusion coefficients with 1D 52

Langevin dynamics for different nanotube radii, temperatures, 53

and gas densities. We show that it is possible to construct 54

effective 1D pore potentials and model parameters that can 55

reproduce the diffusive 3D transport behavior over a broad 56

range of conditions. The proposed parametrization scheme 57

could be extended to other porous materials such as zeolites 58

and metal-organic frameworks. 59

The rest of the article is organized as follows: Section II 60

describes the theoretical methodology and the settings for the 61

atomistic molecular dynamics simulations. In Sec. III we dis- 62

cuss the results obtained for the diffusion constant of nitrogen 63

in carbon nanotubes, comparing the predictions of the reduced 64

1D Langevin model, 3D molecular dynamics simulations, and 65

the Lifson-Jackson formula from Brownian motion theory. In 66

Sec. IV, we suggest possible applications and generalization 67

strategies. 68

II. METHODOLOGY 69

A. Stochastic Langevin dynamics 70

The stochastic motion of Brownian particles can be de- 71

scribed by a Langevin equation [16], which for a 1D system 72

of N particles with trajectories z(α)(t ) can be written as 73

ṗ(α)(t ) = −∂V (zN (t ))
∂z(α)

− γ (α) p(α)(t ) + ξ (α)(t )

∣∣∣∣∣
α=1,2,...,N

,

(1)
where α is the particle index, p is momentum, V is the to- 74

tal potential, and z(α) the position of the αth particle. The 75
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interaction of particle α with a large ensemble of bath par-76

ticles is effectively taken into account by introducing the77

momentum loss (dissipation) term proportional to the damp-78

ing parameter γ and a random momentum kick given by the79

random process ξ (t ), which induces energy fluctuation. These80

terms together take into account the multiples collisions of81

the system (Brownian) particle with the reservoir [1,16]. The82

random momentum kick has zero bias, i.e., 〈ξ (α)〉 = 0 and its83

autocorrelation function is given by84

〈ξ (α)(0)ξ (β )(τ )〉 = 2δ(τ )δαβ m(α)γ (α) kBT, (2)

where m is the particle mass, kB is the Boltzmann constant,85

T is temperature, δ(t ) is the Dirac delta function and δαβ is86

a Kronecker delta. In other words, momentum fluctuations87

are Markovian in time and proportional to the thermal energy88

kBT .89

We solve Eq. (1) numerically for a system of N particles90

using the impulsive Langevin leapfrog algorithm [1], which is91

a modification of the classical Verlet algorithm that involves92

an intermediate velocity correction at each time step of the93

form94

	v(α) = v̇(α)h − γ (α)v(α)(t )h +
√

2kBT γ h/m(α)ξ, (3)

where v(α) and v̇(α) are the velocity and acceleration of the95

αth particle, and h is the time step of the simulation. For a96

free Brownian particle at thermal equilibrium, the damping97

coefficient γ can be obtained from the Einstein relation [1]98

D0 = kBT

mγ
, (4)

where D0 is the free-particle diffusion coefficient. In this99

work, the damping parameter γ encodes the interaction of gas100

molecules with the carbon nanotube walls.101

B. Diffusion from mean squared displacements102

We calculate the self-diffusion coefficient Ds using the103

mean squared displacement (MSD) method from the sim-104

ulated particle trajectories. For a trajectory composed of105

cartesian vectors �ri = (xi, yi, zi ) at times ti, the MSD can be106

calculated as [17]107

MSD(τ = nh) = 1

M − n

M−n∑
i=1

(�ri+n − �ri )
2, (5)

which uses all available offsets τ of a given duration nh with108

n the offset step. The advantage of this definition is that the109

number of such displacements is M − n and therefore it is110

large for small n, resulting in well-averaged MSD values.111

MSD is related to the self-diffusion coefficient by the expres-112

sion [18]113

MSD = 2aDsτ, (6)

where a is the system dimensionality (a = 1 for 1D, a = 3 for114

3D). By solving Eq. (1) for all the particles in the system at115

fixed temperature and density, we calculate MSD from Eq. (5)116

and obtain Ds from the slope of a linear fit plot of Eq. (6) using117

the least-squares method.118

For short simulation times, particle transport is dominated119

by the initial condition and the absence of intermolecular120

interactions (ballistic regime). After equilibration is reached 121

though multiple collisions, the linear scaling of MSD with 122

time is established (diffusive regime). Several methods have 123

been proposed to analyze trajectories with coexisting transport 124

regimes [19]. In our work, the diffusive regime is established 125

when a log-log plot of MSD vs τ , averaged over particles and 126

simulation replicas, has unit slope. 127

C. Lifson-Jackson model for 1D diffusion 128

The Lifson-Jackson formula is an analytical expression, 129

first derived in Ref. [20], for the diffusion coefficient of a 130

periodic 1D potential in terms of the potential depth. The 131

periodic nature of a pristine carbon nanotube potential along 132

its axis allows us to use this theory directly at different tem- 133

peratures. For a periodic potential V (z) with period L, the 134

Lifson-Jackson diffusion coefficient can be written as [20–22] 135

D′
0(T ) = D0(T )L2[∫ L/2

−L/2 e− V (z)
kBT dz

][∫ L/2
−L/2 e

V (z)
kBT dz

] , (7)

where D0 is the free-particle diffusion coefficient from Eq. (4). 136

For a sinusoidal potential V (z) = A sin(az) with depth A and 137

period a/2π , the integrals in the denominator can be solved 138

analytically to give 139

D′
0(T ) = D0(T )

I2
0 (z)

, (8)

where In(z) is a modified Bessel function of the first kind and 140

z = A/kBT . Equation (8) shows that, for sinusoidal potentials, 141

self-diffusion is determined by the ratio between the depth 142

of the potential and the thermal energy, independent of the 143

lattice period. D′
0 reduces to the free-particle limit at high 144

temperatures, and asymptotically vanishes at low tempera- 145

tures, as inferred from the asymptotic forms I0(z → 0) ∼ 1 146

and I0(z → ∞) ∼ ∞. 147

D. Molecular nitrogen in carbon nanotubes 148

Single-walled carbon nanotubes (SWNTs) are cylinders 149

composed of a single wrapped graphene sheet. They are 150

completely described, except for their length, by the notation 151

(n, m) which refers to the direction in which the graphene 152

sheet was rolled [23]. The index n is directly related with 153

the nanotube radius. The self-diffusion of molecular nitro- 154

gen inside a carbon nanotube was computed over a broad 155

range of temperatures in the range 1–103 K, and a range 156

of gas densities spanning from the single-molecule limit to 157

pore saturation. We perform calculations using zig-zag carbon 158

nanotubes (11,0) and (15,0), with radii 4.309 and 5.876 Å, 159

respectively. The nanotube coordinates were obtained with a 160

modeler software [24], for a tube length of 426.3 Å. Figure 1 161

shows representative radial and axial views of the nanotubes 162

used in this work. For MD and Langevin dynamics simula- 163

tions, the thermal motions of carbon atoms in the nanotubes 164

were ignored, which does not introduce significant errors in 165

the evaluation of gas diffusion constants. We set periodic 166

boundary conditions, random initial locations of the gas parti- 167
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FIG. 1. (a) Radial viewpoint of the nanotube (11,0) with molec-
ular nitrogen molecule (N2) in its pore volume. (b) Axial viewpoint
of the nanotube (11,0).

cles, and a thermalization time of 0.5 ns in all simulations.168

We model the interaction between nitrogen molecules and169

between nitrogen and carbon atoms in the nanotube with a170

Lennard-Jones potential171

V (R) = 4ε

[(
σ

R

)12

−
(

σ

R

)6]
, (9)

where R is the interparticle distance. The potential parameters172

for each particle pair in the problem are listed in Table I.173

MD simulations are implemented in LAMMPS [25]. To174

compute 3D MSD trajectories, we adopt a non-vibrating di-175

atomic molecule model for nitrogen, with three-dimensional176

rotational and translational motion inside the CNT. We use a177

time step h = 1 fs in the canonical ensemble. Each replica178

corresponds to a total simulation time of 5 ns. Depending179

on the depth of the effective axial potential experienced by180

a molecule in the nanotube, at very low gas densities (single181

particle) there is a temperature in which nitrogen molecules182

behave as quasifree Brownian particles, as seen from the lin-183

ear scaling of the diffusion coefficient with temperature. In184

this regime, we assume that the Einstein relation in Eq. (4)185

holds and extract the effective damping parameter γ from186

a linear fit. For higher gas densities, nitrogen molecules are187

added inside the CNT with random locations and orienta-188

tions. For MD simulations we define the filling ratio η =189

ρ/ρ0 to quantify nitrogen density ρ relative to the tabu-190

lated density of bulk liquid nitrogen ρ0 at the simulation191

temperature.192

TABLE I. Lennard-Jones parameters: N-N and C-N used in
LAMMPS [18]; N2-N2 and C-N2 used in 1D Langevin.

N-N C-N N2-N2 C-N2

σ (Å) 3.32 3.36 3.63 3.52
ε/kB(K ) 36.4 33.4 104.5 56.2

FIG. 2. (a) Axial potentials at different radii from the center
of the nanotube (11,0). (b) Axial potentials for (15,0). Curves are
labeled by the values of the radial coordinates. The potential is in
units of kelvin.

The stochastic 1D simulations were implemented in Mat- 193

lab with the impulsive Langevin leapfrog algorithm [1], as 194

mentioned previously. As input for the simulation we con- 195

structed axial potentials V (z) that capture the interaction of 196

nitrogen molecules with the CNT walls along the transport 197

direction. In Fig. 2 we show effective axial potentials con- 198

structed for nanotubes (11,0) and (15,0) at different radial 199

distances from the nanotube center. The potentials are periodic 200

with a lattice constant of about 2.1 Å, which correlates with 201

the equilibrium carbon-carbon distance in the nanotubes. At 202

the center of the nanotubes, the depth of the axial potential 203

becomes negligible, and is higher near the walls. 204

In Fig. 3 we show representative radial potentials for the 205

nanotubes (11,0) and (15,0). The potentials feature a repulsive 206

wall near the nanotube radius and radial barrier at the center 207

that separates two potential minima with azimuthal symmetry. 208

The central barrier is about 10 K high for (11,0), and 700 K for 209

(15,0). In Figs. 3(c) and 3(d) we show the histograms of the 210

radial positions that nitrogen molecules explore at 100 K, as 211

obtained from 3D MD trajectories. While for (11,0) the nitro- 212

gen molecules tend to move near the center of the nanotube, 213

for (15,0) the nitrogen molecules tend to move around the 214

minimum of the radial potential, which has ring shape along 215

the azimuthal coordinates. Practically no trajectories explore 216

the nanotube center in this case. 217

For projecting the nitrogen molecule degrees of freedom 218

to 1D axial motion, we replace the rotating diatomic nitrogen 219

by a spherical mass at the position of the molecular center of 220

mass, as illustrated in Fig. 1(a). However, the Lennard-Jones 221

parameters in Table I do take into account the orientational 222

dependence of the interaction potential between two nitro- 223

gen molecules and between nitrogen diatomic and carbon 224
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FIG. 3. (a) Effective radial potential of SWCNT(11,0) with a
potential barrier in the center of approximately 10 K. (b) Effective
radial potential of SWCNT(15,0) with a potential barrier in the center
of approximately 700 K. (c) 2D Histogram of the nitrogen positions
inside nanotube (11,0). (d) 2D Histogram of the nitrogen positions
inside nanotube (15,0), at 100 K; the bar shows normalized number
of counts. Blank regions correspond to spaces of the simulation box
that are not explored by nitrogen molecules

atoms through a thermal averaging procedure described in the 225

Appendix. The stochastic MSD trajectories were obtained 226

with a damping parameter γ calibrated from a dilute nanotube 227

MD simulation, as previously described. The 1D simulation 228

time step is h = 30 fs. The total simulation time is 6.5 ns. To 229

define a 1D filling ratio, we assume the nanotube is saturated 230

(η ≈ 1) when the number of nitrogen molecules in the simu- 231

lation is equal to the ratio between the van der Waals diameter 232

of molecular nitrogen and the length of the simulation box. 233

III. RESULTS AND DISCUSSION 234

In Fig. 4 we show the self-diffusion coefficient for a single 235

nitrogen molecule in carbon nanotubes (11,0) and (15,0), as 236

a function of temperature. We compare the results obtained 237

from 3D MD simulations, 1D Langevin simulations, and the 238

Lifson-Jackson formula. The effective axial potentials V (z) 239

for Langevin and Lifson-Jackson diffusion calculations were 240

evaluated at a minimum of the radial potential. The Langevin 241

damping parameter was obtained via linear fit from the MD 242

diffusion coefficient at 100 K to give γ = 7.5 × 1010 s−1 for 243

(11,0), and γ = 6.0 × 1010 s−1 for (15,0). 244

Below ∼3 K there is essentially no diffusion in the 245

nanotubes, because the thermal energy is lower than the cor- 246

responding axial potential depths (see Fig. 2), so particles 247

FIG. 4. (a) Single-particle diffusion vs temperature of CNT (11,0). (b) Single-particle diffusion vs temperature of CNT and (15,0). Blue:
LAMMPS diffusion. Red: Langevin diffusion. Yellow: Lifson-Jackson formula. Black: free Brownian particle with γ = 7.488 × 1010 and γ =
6.0 × 1010 respectively. (c) Normalized histogram of the center of mass of each nitrogen molecule inside nanotube (11,0). (d) Normalized
histogram of the center of mass of each nitrogen molecule inside nanotube (15,0). Curves are labeled by the value of the temperature.
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FIG. 5. (a) Diffusion vs density (11,0) at 100 K. Blue: MD. Red, green, and purple: Langevin diffusion with different depths of axial
potentials as a function of the radial distance from the center of the nanotube. Black: free particle limit according to Eq. (4) with γ =
7.488 × 1010. (b) Histogram of the radial positions of nitrogen molecules at different densities in MD of CNT (11,0). (c) Graphical modeling
of the nitrogen molecules inside the (11,0) nanotube at the relative saturation density ρ/ρ0 = 1.08, made with VMD [26] (d) Diffusion vs
density (15,0) at 100 K. Blue: MD. Red, green, and purple: Langevin diffusion with different depths of axial potentials as a function of the
radial distance from the center of the nanotube. Black: free particle limit according to Eq. (4) with γ = 6.0 × 1010. (e) Histogram of the radial
positions of nitrogen molecules at different densities in MD of CNT (15,0). (f) Graphical modeling of the nitrogen molecules inside the (15,0)
nanotube at at the relative saturation density ρ/ρ0 = 0.93, made with VMD [26]

become trapped in the axial potential. At higher temperatures,248

the MSD trajectory analysis gives a diffusive regime with a249

log-log slope of 1 ± 0.15 [18], from which we obtain con-250

verged diffusion coefficients.251

As the temperature increases, all methods capture a252

crossover between particle trapping and diffusion around253

10 K, beyond which the diffusion constant scales linearly with254

temperature, as expected from Eq. (4) for quasifree Brown-255

ian motion. The self-diffusion coefficients for 1D Langevin256

and Lifson-Jackson formulas coincide in the entire range of257

temperatures studied. However, while the orders of magni-258

tude are the same, the 3D diffusion coefficients obtained with259

MD are consistently greater. The similarity in self-diffusion260

coefficients of the 1D Langevin and Lifson-Jackson formulas261

can be explained by the fact that both methods use the same262

one-dimensional axial potential as input data. In addition, at263

high temperatures they must converge to the value of D0. The264

discrepancy between 3D and 1D results grows with tempera-265

ture, as Fig. 4(b) illustrates more clearly for the wider (15,0)266

nanotube.267

To understand this discrepancy at high temperature, in268

Figs. 4(c) and 4(d) we show the histograms of the radial po-269

sitions of the centers of mass explored by nitrogen molecules270

at different temperatures for the nanotubes (11,0) and (15,0), 271

obtained from 3D MD trajectories. At low temperatures 272

(T ∼ 10 K), molecules are mostly trapped at the minima of 273

their corresponding radial potentials. At higher temperatures 274

(T ∼ 100 K), particles have more energy to explore a larger 275

fraction of the nanotube pore volume, broadening the radial 276

distribution and displacing the most-probable radius towards 277

the nanotube walls. This effective increase in the configuration 278

space involved in axial transport cannot be captured by the 279

effective 1D Langevin model, without redefining γ . However, 280

the agreement is excellent between the dilute 1D Langevin 281

with a single value of γ and the 3D MD simulations, over a 282

broad range of temperatures. 283

In Figs. 5(a) and 5(b) we plot the nitrogen diffusion coeffi- 284

cient as a function of the gas filling ratio η = ρ/ρ0 for (11,0) 285

and (15,0) nanotubes, respectively. We compare the results 286

obtained from 3D MD and 1D Langevin simulations at 100 K. 287

For the 1D calculations, we approximately capture the density 288

dependence of the effective axial molecule-nanotube axial 289

potential by evaluating the nitrogen-nanotube axial potential 290

at the peak of the radial distribution of MD trajectories shown 291

in Fig. 5(b) for (11,0) and Fig. 5(e) for (15,0). For increasing 292

molecular densities, close to saturation (η > 0.90), the radial 293
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density of trajectories peaks closer to the pore walls. In gen-294

eral, both 3D and 1D simulations give diffusion coefficients295

that decrease monotonically with the pore occupation for the296

two nanotube radii considered.297

Depending on the radial position used to estimate the depth298

of the effective axial potential V (z), the Langevin calculations299

can approximate the atomistic 3D results reasonably well300

over the entire range of densities up to the saturation regime301

(η ∼ 1). For axial potential depths below 30 K (r < 0.8 Å),302

Fig. 5(a) shows that the agreement between the 1D and 3D303

curves is excellent up to η ≈ 0.4 for (11,0) nanotubes. At304

these low gas concentrations, nitrogen molecules move prefer-305

ably near the center of the nanotube [see the peak at r = 0.5306

Å in Fig. 5(b)].307

At higher densities (η ∼ 0.8–1.0), there is a sudden shift in308

radial density towards the walls of the (11,0) nanotube. This309

shift is due to emergence of stacked configurations between310

nitrogen molecules, as shown in Fig. 5(c) where the nitrogen311

molecules are pushed towards the walls of the nanotube find-312

ing different axial potentials. At higher densities, the Langevin313

simulations consistently overestimate the diffusion coefficient314

relative to atomistic MD, although both 1D and 3D continue315

to have similar qualitative behavior, reaching asymptotic satu-316

ration for η ∼ 1. By evaluating the axial potential closer to the317

peak of the radial trajectory distribution at the corresponding318

density [see Fig. 5(b)], the Langevin results can be made to319

agree with the MD simulations over a wider range of densities320

with the same low-density value of γ .321

For the wider (15,0) nanotube, we find similar trends when322

comparing 1D and 3D diffusion coefficients in Fig. 5(d).323

Again the agreement between MD and Langevin simulations324

can be improved by sampling the axial potential closer to325

the peak of the radial trajectory distribution at a given gas326

density [Fig. 5(e)]. The main qualitative difference between327

(11,0) and (15,0) nanotubes occurs near saturation, as the328

larger pore volume of (15,0) allows for more intricate stack-329

ing configurations of the nitrogen molecules, which are more330

difficult to capture with 1D effective models than the small-331

pore saturation behavior of (11,0), At different densities of332

nitrogen molecules, different stacking configurations are cre-333

ated, affecting the axial interaction potential. For example.334

Fig. 5(f) shows a representative quadruple “helix” config-335

uration that nitrogen molecules adopt at high filling ratios336

in the (15,0) nanotube (η = 0.9). These helical structures337

have been reported in carbon nanotubes for nitrogen [18] and338

water [27].339

To assess the gain in computational resources that a re-340

duced Langevin model can potentially introduce for studying341

the transport properties of porous materials, we note that the342

density dependence of the diffusion constants in Figs. 5(a) and343

5(d) can be reproduced with the 1D Langevin model from the344

dilute regime up to the nanotube saturation limit using, in prin-345

ciple, only 3 MD simulations: two low-density simulations346

to calibrate γ , and one additional simulation for a selected347

saturation level ρ/ρ0 to calibrate the choice of the radius r (a348

free parameter) at which the effective axial potential V (z, r)349

should be evaluated. These MD calculations fully parametrize350

the Langevin model and allow for predictions of the diffusion351

coefficient over a broader range of temperatures and densities352

than the original simulation conditions.353

FIG. 6. (a) Interaction potentials of for a pair of nitrogen
molecules considering all possible orientations. (b) Scheme of spatial
coordinates for a pair of nitrogen molecules

IV. CONCLUSIONS 354

In this work we developed an effective one-dimensional 355

Langevin equation model for the diffusive transport for di- 356

lute and dense molecular gases inside carbon nanotubes, as 357

a function of tube radius and temperature. By parametrizing 358

the Langevin model using atomistic molecular dynamics sim- 359

ulations over a limited range of densities and temperatures, 360

we find that the reduced stochastic approach can accurately 361

extrapolate the behavior of the diffusion coefficient over a 362

broader range of temperatures and nanotube filling ratios. 363

For higher densities closer to saturation, we show that the 364

effective potential that drives the Langevin dynamics along 365

the nanotube axis can be adjusted to account for the in- 366

teraction between gas particles over transverse degrees of 367

freedom, and propose criteria to obtain effective Langevin 368

potentials and damping parameters using nitrogen transport 369

in carbon nanotubes as an example. We envision future exten- 370

sions of the proposed dimensionality reduction methodology 371

to study diffusive transport of gases and liquids in complex 372

nanoporous media such as metal-organic frameworks, zeo- 373

lites, and structured electrodes, which could facilitate the 374

large-scale screening of materials for applications in energy, 375

catalysis, and gas separation. 376
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APPENDIX: EFFECTIVE INTERACTION POTENTIAL384

We want to find the effective potential between the di-385

atomic molecules of N2 and C-N2. If we simulate a large set386

of potentials of N2-N2 considering all possible configurations387

or orientations with equal probability, we obtain a wide range388

of potential values, as shown in Fig. 6(a). Linearly adding the389

interactions between each pair of molecules (r13, r14, r23, r24)390

for random orientations of each molecule [Fig. 6(b)] and then391

averaging with a Boltzman weight, it is possible to find an392

effective total potential at a certain temperature:393

V (T, d ) =
∑

i e
−min(Vi (d ))

kBT × Vi(d )∑
i e

−min(Vi (d ))
kBT

. (A1)

394

This effect is easily explained if we consider the effect of 395

the spatial orientations of the N2 molecules. At low tempera- 396

tures, the possible spatial orientations experienced by the N2 397

molecule are “limited.” They are arranged in such a way as to 398

minimize energy. The opposite is the case at high temperatures 399

that experiences almost equally all possible spatial orienta- 400

tions, including (for example) a system of two interacting 401

N2 molecules arranged collinearly in space (system where 402

energy is maximized). Replicating the previous calculation, 403

the interaction potential between C-N2 can be determined, we 404

can calculate the potential as a function of the radius of the 405

interior of the nanotube. Finally, by finding the minima of the 406

potentials and their intersection with zero, we can determine 407

their potential analog of Lennard-Jones; the parameters ob- 408

tained are found in Table. I. 409
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